Redox Equilibria - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Marks
(a)		Look at the equation in the question for the correct oxidation number changes if not given on the answer lines	2
		Award maximum of one mark if the terms oxidised and reduced are not used or used the wrong way round	

Question number	Answer		Additional guidance	Mark
(b)	An answer which makes reference to the following points:		Accept the points in either order	2
	(precaution) carry out in a fume cupboard	`	Do not award 'well-ventilated laboratory/ face masks'	
	 (hazard) toxic nitrogen dioxide/NO₂ gas. 	(1)	Allow poisonous	

Question number	Answer		Additional guidance	Marks
(c)			Example of calculation:	6
	calculation of the number of moles of thiosulfate	(1)	$n(S_2O_3^{2-}) = (22.65 \times 0.100 \div 10000 =)$ = 2.265 × 10 ⁻³ /0.002265 (mol)	
	evaluation of the number of moles of iodine	(1)	$n(I_2) = (2.265 \times 10^{-3} \div 2=)$ = 1.1325 × 10 ⁻³ / 0.0011325 (mol)	
	evaluation of the number of moles of copper ions in the 10.0 cm³ aliquot	(1)	$n(Cu^{2+}) = (1.1325 \times 10^{-3} \times 2=)$ = 2.265 × 10 ⁻³ / 0.002265 (mol)	
	evaluation of the number of moles of copper ions in 250 cm ³	(1)	n(Cu ²⁺) = (2.265 × 10 ⁻³ × 25) = 5.6625 × 10 ⁻² / 0.056625 (mol)	
	evaluation of mass of copper ions in sample	(1)	m(Cu ²⁺) = (5.6625 × 10 ⁻² × 63.5=) = 3.5956875 (g)	
	evaluation of percentage of copper in sample to 2/3 SF	(1)	% = (3.5956875 ÷ 5.0000 × 100= 71.91375=)	
			= 72/71.9 %	
			Penalise inappropriate rounding once only	
			Correct answer with no working scores 6 marks	

Question number	Answer		Additional guidance	Marks
(d)	An answer that makes reference to the following points: • colours of the precipitates formed	(1)	Blue precipitate with copper(II) ions and white precipitate with zinc ions	6
	addition of excess sodium hydroxide has no effect on copper precipitate	(1)		
	but the zinc precipitate dissolves to form colourless solution	(1)	Do not award 'clear'	
	equation for the formation of a precipitate for either copper(II) or zinc ions	(1)	Example of equations: $ [Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow \\ Cu(H_2O)_4OH)_2(s) \\ + 2H_2O(l) \\ or \\ [Zn(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Zn(OH)_2(s) \\ + 6H_2O(l) $	
	equation for the dissolving of the zinc precipitate	(1)	or $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ or $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$	
	all state symbols correct.	(1)	$Zn(OH)_2(s)+2OH^-(aq)\rightarrow [Zn(OH)_4]^{2-}(aq)$	

Question number	Answer	Additional guidance	Marks
(e)	An explanation that makes reference to:		2
	 copper forms an ion with an incomplete d subshell 		
	 but the only ion that zinc forms has a completely filled d subshell. 		

Question number	Answer	Additional guidance	Marks
(f)	A explanation that makes reference to:		2
	the atoms/cations are of different size (1) (in brass)	Ignore movement of the electrons	
	therefore the layers do not slide over one another so easily. (1)	Accept a labelled diagram	

Q2.

Question number	Answer	Mark
	A $\frac{1}{2}O_2(g) + H_2O(l) + 2e^- \rightarrow 2OH^-(aq)$	1

Question number	Answer	Mark
(a)	D the colour change of the reduction of the manganate(VII) ions is sufficient	1

Question number	Answer	Mark
(b)	B uncertainty 0.06%	1

Question number	Answer	Mark
(c)	D 0.014	1

Q4.

Question number	Answer	Additional guidance	Marks
(a)	 298 K and 100 kPa (of gases) 	Accept 25°C Accept 1 atm	1

Question number	Answer	Additional guidance	Marks
(b)(i)	 E^e_{cell} = (+0.340.76=) (+)1.10 (V) 		1

Question number	Answer	Additional guidance	Marks
(b)(ii)	An answer to include observations such as: blue colour of copper(II) sulfate becomes paler (pink/brown) copper metal deposited (on the electrode surface)	Observations can be in any order Three observations scores 2 Two observations scores 1	2
	zinc electrode decreases in size.		

Question number	Answer		Additional guidance	Marks
(c)	A justification that makes reference to the following points:		Ignore:	3
	• Iron $E^{\bullet}_{cell} = (-0.44 - +0.77 =) -1.21 (V)$ and Copper $E^{\bullet}_{cell} = (+0.52 - +0.15 =) +0.37$ (V)	(1)	3Fe ²⁺ → Fe + 2Fe ³⁺	
	• 2Cu ⁺ → Cu ²⁺ + Cu	(1)	Ignore state symbols	
	comment on copper electrode potential is positive so disproportionation is feasible and iron electrode potential is negative so disproportionation is not feasible.	(1)		

Question number	Answer	Additional guidance	Marks
(d)	High activation energy/physical barrier prevents reaction Reaction is (very) slow Reaction conditions may not be standard		1