Redox Equilibria - Mark Scheme ## Q1. | Question
number | Answer | Additional guidance | Marks | |--------------------|--------|---|-------| | (a) | | Look at the equation in the
question for the correct
oxidation number changes if
not given on the answer lines | 2 | | | | Award maximum of one mark if
the terms oxidised and reduced
are not used or used the wrong
way round | | | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|-----|---|------| | (b) | An answer which makes reference to the following points: | | Accept the points in either order | 2 | | | (precaution) carry out in a fume
cupboard | ` | Do not award 'well-ventilated laboratory/ face masks' | | | | (hazard) toxic nitrogen dioxide/NO₂
gas. | (1) | Allow poisonous | | | Question number | Answer | | Additional guidance | Marks | |-----------------|---|-----|---|-------| | (c) | | | Example of calculation: | 6 | | | calculation of the number of moles of thiosulfate | (1) | $n(S_2O_3^{2-}) = (22.65 \times 0.100 \div 10000 =)$
= 2.265 × 10 ⁻³ /0.002265 (mol) | | | | evaluation of the number of moles of iodine | (1) | $n(I_2) = (2.265 \times 10^{-3} \div 2=)$
= 1.1325 × 10 ⁻³ / 0.0011325
(mol) | | | | evaluation of the number of moles of
copper ions in the 10.0 cm³ aliquot | (1) | $n(Cu^{2+}) = (1.1325 \times 10^{-3} \times 2=)$
= 2.265 × 10 ⁻³ / 0.002265 (mol) | | | | evaluation of the number of moles of
copper ions in 250 cm ³ | (1) | n(Cu ²⁺) = (2.265 × 10 ⁻³ × 25)
= 5.6625 × 10 ⁻² / 0.056625
(mol) | | | | evaluation of mass of copper ions in sample | (1) | m(Cu ²⁺) = (5.6625 × 10 ⁻² × 63.5=)
= 3.5956875 (g) | | | | evaluation of percentage of copper in
sample to 2/3 SF | (1) | % = (3.5956875 ÷ 5.0000 × 100=
71.91375=) | | | | | | = 72/71.9 % | | | | | | Penalise inappropriate rounding once only | | | | | | Correct answer with no working scores 6 marks | | | Question number | Answer | | Additional guidance | Marks | |-----------------|---|-----|--|-------| | (d) | An answer that makes reference to the following points: • colours of the precipitates formed | (1) | Blue precipitate with copper(II) ions and white precipitate with zinc ions | 6 | | | addition of excess
sodium hydroxide has
no effect on copper
precipitate | (1) | | | | | but the zinc precipitate
dissolves to form
colourless solution | (1) | Do not award 'clear' | | | | equation for the
formation of a precipitate
for either copper(II) or
zinc ions | (1) | Example of equations: $ [Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow \\ Cu(H_2O)_4OH)_2(s) \\ + 2H_2O(l) \\ or \\ [Zn(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Zn(OH)_2(s) \\ + 6H_2O(l) $ | | | | equation for the
dissolving of the zinc
precipitate | (1) | or $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ or $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$ | | | | all state symbols correct. | (1) | $Zn(OH)_2(s)+2OH^-(aq)\rightarrow [Zn(OH)_4]^{2-}(aq)$ | | | Question
number | Answer | Additional guidance | Marks | |--------------------|--|---------------------|-------| | (e) | An explanation that makes reference to: | | 2 | | | copper forms an ion with an incomplete d
subshell | | | | | but the only ion that zinc forms has a
completely filled d subshell. | | | | Question
number | Answer | Additional guidance | Marks | |--------------------|--|----------------------------------|-------| | (f) | A explanation that makes reference to: | | 2 | | | the atoms/cations are of different size (1) (in brass) | Ignore movement of the electrons | | | | therefore the layers do not slide over one another so easily. (1) | Accept a labelled diagram | | ## Q2. | Question
number | Answer | Mark | |--------------------|--|------| | | A $\frac{1}{2}O_2(g) + H_2O(l) + 2e^- \rightarrow 2OH^-(aq)$ | 1 | | Question
number | Answer | Mark | |--------------------|---|------| | (a) | D the colour change of the reduction of the manganate(VII) ions is sufficient | 1 | | Question
number | Answer | Mark | |--------------------|---------------------|------| | (b) | B uncertainty 0.06% | 1 | | Question
number | Answer | Mark | |--------------------|---------|------| | (c) | D 0.014 | 1 | ## Q4. | Question
number | Answer | Additional guidance | Marks | |--------------------|--|-----------------------------|-------| | (a) | 298 K and 100 kPa (of gases) | Accept 25°C
Accept 1 atm | 1 | | Question number | Answer | Additional guidance | Marks | |-----------------|---|---------------------|-------| | (b)(i) | E^e_{cell} = (+0.340.76=) (+)1.10 (V) | | 1 | | Question
number | Answer | Additional guidance | Marks | |--------------------|---|--|-------| | (b)(ii) | An answer to include observations such as: blue colour of copper(II) sulfate becomes paler (pink/brown) copper metal deposited (on the electrode surface) | Observations can be in any order
Three observations scores 2
Two observations scores 1 | 2 | | | zinc electrode decreases in size. | | | | Question
number | Answer | | Additional guidance | Marks | |--------------------|---|-----|--|-------| | (c) | A justification that makes reference to the following points: | | Ignore: | 3 | | | • Iron $E^{\bullet}_{cell} = (-0.44 - +0.77 =) -1.21 (V)$
and
Copper $E^{\bullet}_{cell} = (+0.52 - +0.15 =) +0.37$
(V) | (1) | 3Fe ²⁺ → Fe + 2Fe ³⁺ | | | | • 2Cu ⁺ → Cu ²⁺ + Cu | (1) | Ignore state symbols | | | | comment on copper electrode potential
is positive so disproportionation is
feasible and iron electrode potential is
negative so disproportionation is not
feasible. | (1) | | | | Question
number | Answer | Additional guidance | Marks | |--------------------|--|---------------------|-------| | (d) | High activation energy/physical barrier
prevents reaction
Reaction is (very) slow
Reaction conditions may not be standard | | 1 |